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1 Introduction

The central claim we1 would like to defend in the present paper is that the algebraic
analysis of opposition and implication relations between propositions, operators, or
quantifiers (Jaspers, 2005; Smessaert, 2009; Smessaert & Demey, 2014) not only car-
ries over to the realms of colour, numbers or natural language concepts (Jaspers,
2012; Seuren& Jaspers, 2014), but also to that of (3D) geometrical shapes. To corrob-
orate this claim we will present a detailed logical-algebraic and geometrical analysis
of the simplest of all polyhedra, viz. the ęĊęėĆčĊĉėĔē. We start off by introducing
the basic geometric properties of the tetrahedron (§ 2). Then we introduce two al-
gebras – one for the tetrahedron’s (zero-dimensional) ěĊėęĊĝ constellations (§ 3) and
one for its (two-dimensional) ċĆĈĊ constellations (§ 4) – and go into two possible iso-
morphisms between the two algebras (§ 5). Finally, we turn to the more complex
algebra for the tetrahedron’s (one-dimensional) ĊĉČĊ constellations (§ 6) and briefly
consider some partial mappings between the vertex/face algebras on the one hand
and the edge algebra on the other (§ 7).

2 Basic properties of the tetrahedron

Platonic vertices edges faces Euler
solid V E F V - E + F = 2

ęĊęėĆčĊĉėĔē 4 6 4 (triangular) 4 - 6 + 4 = 2
čĊĝĆčĊĉėĔē 8 12 6 (square) 8 - 12 + 6 = 2
ĔĈęĆčĊĉėĔē 6 12 8 (triangular) 6 - 12 + 8 = 2

Table 1: The Euler formula for the tetrahedron, hexahedron and octahedron.

The ęĊęėĆčĊĉėĔē – informally speaking a ‘pyramid with a triangular base plane’
– is the smallest 3D shape possible. It has 4 vertices (V), 4 equilateral triangular faces

1It seemed like an appropriatemove tomakeDany the co-author of a paper in his own Festschrift, even
though he has largely been unaware of the paper’s existence or its writing process. The ideas that are
explored here are the result of many a lively discussion we had together on our shared interest in algebra
and geometry. Let it be a token of my gratitude for our past and continued collaboration and friendship
(HS).
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(F), and 6 edges (E), and satisfies the Euler Formula V - E + F = 2. It belongs to the
group of PđĆęĔēĎĈ ĕĔđĞčĊĉėĆ, which includes the hexahedron (cube), the octahe-
dron, the dodecahedron and the icosahedron.2 The three smallest Platonic solids are
described in Table 1. The hexahedron and octahedron (and similarly the dodecahe-
dron and icosahedron) are one another’s ĉĚĆđĘ: connecting the mid points of the
6 faces of a hexahedron yields an octahedron, and conversely, connecting the mid
points of the 8 faces of an octahedron yields a hexahedron. In other words, the dual-
ity is based on ‘exchanging vertices and faces’. The tetrahedron is called ĘĊđċ-ĉĚĆđ:
connecting themid points of the 4 faces of a tetrahedron again yields a tetrahedron3

Although the tetrahedron is defined as a 3D solid, it is standardly characterized—
as was the case above — on the lower dimensions in terms of three sets, namely the
set of its vertices V, the set of its edges E and the set of its faces F. In the algebraic
approach adopted in this paper, edges are ‘created’ on the basis of two vertices by
means of the two-place edge-operator ◦, and faces are ‘created’ on the basis of three
vertices by means of the (discontinuous) three-place face-operator • . . .•. Both op-
erators will be used in their infix-notation, i.e. x ◦ y is the edge connecting vertices x
and y , and x • y • z is the triangular face connecting the vertices x , y and z:

0-dimensionality vertices V := {a, b, c, d}
1-dimensionality edges E := {a ◦ b, a ◦ c, a ◦ d, b ◦ c, b ◦ d, c ◦ d}
2-dimensionality faces F := {a • b • c, a • b • d, a • c • d, b • c • d}

3 The vertex algebra VA (zero-dimensionality)

Onthebasisof the setof verticesVwecangenerate the setVCofall vertex-constellations
(vc) as the power set ofV, i.e. VC :=℘(V). TheVC set then serves as the first element
of the six-tuple,making up theVĊėęĊĝAđČĊćėĆVA, a classical BooleanAlgebra, with
the binary operators of intersection and union (∩ and ∪), the unary complement op-
erator (∼), and the bottom and top elements (∅ and V):

VA :=< VC, ∩, ∪,∼,∅, V>
This algebra VA can be visually represented bymeans of a lattice (Davey & Priest-

ley, 2002) or Hasse diagram (Demey & Smessaert, 2014), as is shown informally —
i.e. without visualising the partial ordering relations among the elements4 — in Fig-
ures 1 and 2. The 24 = 16 vc’s in VC can be subdivided into 5 đĊěĊđĘ— levels zero (L0)
through four (L4) – according to the number of their constituent vertices:5

The algebraic analysis of the Aristotelian relations— and their 3D visualisation by
means of the ėčĔĒćĎĈ ĉĔĉĊĈĆčĊĉėĔē (RDH)— straightforwardly carries over to the

2See standard reference works such as Cromwell (1997) and Coxeter (1973) for more details.
3In other words, with self-dual polyhedra the number of vertices equals the number of faces.
4For convenience’s sake, we replace the curly brackets and comma’s for the subsets of a set by the plus

symbol, i.e. a+ . . .+ b := {a, . . . , b}, and hence a+ b+ c+ d = {a, b, c, d}= V , i.e. the top element of the
VA algebra.

5This constellation/distribution is well-known as that of the binomial coefficients, as arranged in Pas-
cal’s triangle (Edwards, 2002)
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L4 1 a+ b+ c + d

L3 4 a+ b+ c a+ b+ d a+ c + d b+ c + d

L2 6 a+ b a+ c a+ d b+ c b+ d c + d

L1 4 a b c d

L0 1 ∅

Figure 1: The Hasse diagram of the Vertex Algebra VA for the tetrahedron.

Figure 2: The 3D Hasse diagram of the Vertex Algebra VA for the tetrahedron.

domain of vertex constellations VC.6 Two vc’s can be said to stand in the Aristotelian
relations of ĈĔēęėĆĉĎĈęĎĔē, (ĘĚć)ĈĔēęėĆėĎĊęĞ, or ĘĚćĆđęĊėēĆęĎĔē. For any pair of
vc’sφ andψ ∈ V C it holds that they are:

20 = 1 = 1
21 = 2 = 1 1
22 = 4 = 1 2 1
23 = 8 = 1 3 3 1
24 = 16 = 1 4 6 4 1
25 = 32 = 1 5 10 10 5 1
26 = 64 = 1 6 15 20 15 6 1

6In particular, the vertex algebra VA is isomorphic to the Boolean algebra B4 (Smessaert & Demey,
2016; Demey& Smessaert, 2017b), and could therefore receive an analysis in terms of bitstrings of length 4
(Smessaert & Demey, 2017; Demey & Smessaert, 2017a). For more details, see www.logicalgeometry.
org.
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contradictory iff φ ∩ψ=∅ andφ ∪ψ= V
contrary iff φ ∩ψ=∅ andφ ∪ψ ̸= V
subcontrary iff φ ∩ψ ̸=∅ andφ ∪ψ= V
in subalternation iff φ ∩ψ= φ andφ ∪ψ ̸= φ

Using these definitions, the L2 vc a+ b, for instance, is contradictory to L2 c+ d,
contrary to L1 c and d, subcontrary to L3 a+ c+d and b+ c+d and in subalternation
with L1 a and b. Note that the relation of contradiction is represented by means of
ĈĊēęėĆđ ĘĞĒĒĊęėĞ, both in the ‘symbolic’ version in Figure 1 and in the 3D graphical
version of Figure 2.7 In other words, any vc has its contradictory located at themirror
image position with respect to an (imaginary) point of symmetry in themiddle of the
visual representation.

The purpose of the present paper, however, is not so much to study the internal
structure of the vertex algebra VA as such, but rather the external relations with two
different algebras, namely that of the faces (two-dimensionality) of the tetrahedron
and that of its edges (one-dimensionality).

4 The face algebra FA (two-dimensionality)

Recall that F is the set consisting of the 4 faces of the tetrahedron {a • b • c, a • b •
d, a• c •d, b• c •d}. On the basis of Fwe can generate the power set℘(F) = FC of all
face-constellations (fc), which then serves as the first element of the FĆĈĊ AđČĊćėĆ
FA, again a classical Boolean Algebra:

FA :=< FC, ∩, ∪,∼,∅, F>
Aswas the case for the vertex algebraVA in the previous section, the face algebra

FA canbevisually representedbymeansof theHassediagrams inFigures 3and4. The
24 = 16 fc’s in FC can be subdivided into 5 đĊěĊđĘ— L0 through L4 – according to the
number of their constituent faces:

L4 1 a • b • c + a • b • d + a • c • d + b • c • d

L3 4 a • b • c + a • b • d + a • c • d . . . . . . a • b • d + a • c • d + b • c • d

L2 6 a • b • c + a • b • d . . . . . . . . . . . . a • c • d + b • c • d

L1 4 a • b • c a • b • d a • c • d b • c • d

L0 1 ∅

Figure 3: The Hasse diagram of the Face Algebra FA for the tetrahedron.

7The interactive 3D virtual reality versions (in X3D format) of Figures 2, 4 and 6 are available from
www.logicalgeometry.org/3D-diagrams.htm.
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Figure 4: The 3D Hasse diagram of the Face Algebra FA for the tetrahedron.

The algebraic definitions of the Aristotelian relations — as given for the vertex
constellations in the previous section — straightforwardly carry over to the face con-
stellations of FC. The L2 fc a • b • c + a • b • d, for instance, is contradictory to L2
a•c•d+b•c•d, contrary to L1 a•c•d and subcontrary to L3 a•b•d+a•c•d+b•c•d.
Notice that — both in Figures 3 and 4 — any fc has its contradictory located at the
mirror image position with respect to the point of central symmetry in the visual rep-
resentation. As pointed out before, however, the internal structure of the individual
algebras is not our main concern here. Instead, we want to focus on the external re-
lations between the algebras. In the next section, we go into the systematic correla-
tions between the two algebras introduced so far, namely the vertex algebra VA for
zero-dimensionality and the face algebra FA for two-dimensionality.

5 Isomorphisms between VA and FA

Due to the self-duality of the tetrahedron, the number of vertices is identical to the
number of faces. As a consequence, the two algebras for the vertex and face constel-
lations — VA and FA — have the same degree of complexity: they are both isomor-
phic to the Boolean algebra B4 (with bitstrings of length 4). Applying transitivity, we
can now consider the isomorphism between VA and FA.8

8Although this notion of isomorphism can easily be made formally precise, we will refrain from doing
so in the present context, focussing on the underlying intuitions instead. We will informally represent the
isomorphism relation with the similarity symbol∼.
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As a matter of fact, at least two ‘natural’ ways of establishing this isomorphism
suggest themselves, a ‘parallel but negative’ way and a ‘diagonal but positive’ way.
With the ĕĆėĆđđĊđ isomorphism, the notion of level is maintained in that the 4 L1
elements of VA are mapped onto the 4 L1 elements of FA, and similarly for the re-
spective L2 and L3 elements. With the ĉĎĆČĔēĆđ isomorphism, by contrast, the L1
elements of VA are mapped onto the L3 of FA, L3 of VA onto L1 of FA, and L2 of
VA onto L2 of FA. Furthermore, the parallel isomorphism can be called a ēĊČĆęĎěĊ
mapping, since it establishes a relationshipof complementarity oropposition, whereas
the diagonal isomorphism can be called a ĕĔĘĎęĎěĊmapping, since it establishes a re-
lationship of connection/constitution or implication.9 Let us first consider the parallel
— L1 ∼ L1, L2 ∼ L2 and L3 ∼ L3 — but negative — oppositional — isomorphism
between the VA and the FA:

• mapping the 4 L1 elements ofVA onto the 4 L1 elements of FA, each vertex is
associatedwith the opposite face that consists of the remaining three vertices:

a ∼ b • c • d b ∼ a • b • d
c ∼ a • b • d d ∼ a • b • c

• mapping the 4 L3 elements of VA onto the 4 L3 elements of FA, each trio of
vertices is associatedwith the trio of faces which excludes the plane defined by
the three vertices:

a+ b+ c ∼ a • b • d + b • c • d + a • c • d
a+ b+ d ∼ a • b • c + b • c • d + a • c • d
a+ c + d ∼ a • b • c + b • c • d + a • b • d
b+ c + d ∼ a • b • c + a • c • d + a • b • d

• mapping the 6 L2 elements of VA onto the 6 L2 elements of FA, each pair of
vertices is associated with the pair of faces which excludes the edge defined by
the two vertices:

a+ b ∼ b • c • d + a • c • d b+ c ∼ a • c • d + a • b • d
a+ c ∼ b • c • d + a • b • d b+ d ∼ a • b • c + a • c • d
a+ d ∼ a • b • c + b • c • d c + d ∼ a • b • c + a • b • d

We can now compare the above ‘parallel but negative’ isomorphism to the diago-
nal— L1∼ L3, L2∼ L2 and L3∼ L1 — but positive— implicational — isomorphism
between the VA and the FA below:

• mapping the L1 elements of VA onto the L3 elements of FA, each vertex is
associated with the trio of faces that it constitutes the ‘apex’ of:

a ∼ a • b • c + a • c • d + a • b • d
b ∼ a • b • c + b • c • d + a • b • d
c ∼ a • b • c + b • c • d + a • c • d
d ∼ a • b • d + b • c • d + a • c • d

9A possibly interesting parallellism suggests itself here with the distinction drawn in Smessaert & De-
mey (2014) between the opposition and implication geometries.
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• mapping the L3 elements of VA onto the L1 elements of FA, each trio of ver-
tices is associated with the face it constitutes:

a+ b+ c ∼ a • b • c a+ b+ d ∼ a • b • d
a+ c + d ∼ a • c • d b+ c + d ∼ b • c • d

• mapping the L2 elements of VA onto the L2 elements of FA, each pair of ver-
tices is associatedwith thepair of faceswhichare joinedat theedgeconstituted
by the two vertices:

a+ b ∼ a • b • c + a • b • d b+ c ∼ a • b • c + b • c • d
a+ c ∼ a • b • c + a • c • d c + d ∼ b • c • d + a • c • d
a+ d ∼ a • c • d + a • b • d b+ d ∼ b • c • d + a • b • d

Both the ‘parallel but negative’ isomorphism and the ‘diagonal but positive’ iso-
morphism yielded perfect one-to-one correspondences between the vertex constel-
lations ofVA and the face constellations of FA. In the next section, we introduce the
more complex edge algebraEA, which will only enter into partial correspondence re-
lations with either VA or FA.

6 The edge algebra EA (one-dimensionality)

Recall that E is the set consisting of the 6 edges of the tetrahedron {a ◦ b, a ◦ c, a ◦
d, b ◦ c, b ◦ d, c ◦ d}. On the basis of Ewe can generate the power set℘(E) = EC of all
edge-constellations (ec), which then serves as the first element of the EĉČĊ AđČĊćėĆ
EA, again a classical Boolean Algebra:

EA :=< EC, ∩, ∪,∼,∅, E>
In contrast to the VC and FC algebras — which contained 24 = 16 vc’s and fc’s in

Sections 3 and 4 respectively — the number of ec’s is considerably larger, i.e. 26 =
64. These 64 ec’s can be subdivided into 7 levels (L0 through L6), according to the
number of their constituent edges.10 The edge algebra EA is represented visually —
but schematically, i.e. partially — bymeans of the Hasse diagrams in Figures 5 and 6:

Strictly speaking, the algebraic definitions of the Aristotelian relations— as given
for the vertex constellations in Section 3 — straightforwardly carry over to the edge
constellations ofEA. However, EA is no longer isomorphic to the Boolean algebraB4
(with bitstrings of length 4) but rather toB6, i.e. with bitstrings of length 6. The latter
structure is clearly far less well-studied within Logical Geometry than the rhombic
dodecahedron for B4, so we will not go into any further Aristotelian details here.

Nevertheless, one important observation needs to bemade at this point: the step
from the 16 vertex/face constellations to the 64 edge constellations has ‘broken the
uniformity’ within the levels. In VA and FA, all elements that occur on one level are
of the same ‘type’, i.e. identical up to permutation or rotation. This is obvious for the

10In other words, the complexity increases considerably when we move from the fifth row of Pascal’s
triangle down to the seventh row (cf. footnote 5).
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L6 1 a ◦ b+ a ◦ c + a ◦ d + b ◦ c + b ◦ d + c ◦ d

L5 6 a ◦ b+ . . .+ . . .+ . . .+ b ◦ d . . . a ◦ c + . . .+ . . .+ . . .+ c ◦ d

L4 15 a ◦ b+ a ◦ c + a ◦ d + b ◦ c . . . . . . a ◦ d + b ◦ c + b ◦ d + c ◦ d

L3 20 a ◦ b+ a ◦ c + a ◦ d . . . . . . . . . . . . . . . b ◦ c + b ◦ d + c ◦ d

L2 15 a ◦ b+ a ◦ c a ◦ b+ a ◦ d . . . b ◦ c + c ◦ d b ◦ d + c ◦ d

L1 6 a ◦ b a ◦ c a ◦ d b ◦ c b ◦ d c ◦ d

L0 1 ∅

Figure 5: The Hasse diagram of the Edge Algebra EA for the tetrahedron.

4 single elements or the 4 trio’s that occur on the respective L1 and L3 of both VA
and FA, but even the 6 pairs of vertices or the 6 pairs of faces on the middle L2 are
clearly uniform. With the considerably bigger numbers of edge constellations on the
middle three levels of EA, however— namely L2, L3 and L4 in Figures 5 and 6— this
uniformity is lost. The 15 ec’s that occur on both L2 and L4 turn out to fall apart into
a small subgroup of 3 ec’s and the remaining group of 12 ec’s:

L2 3 a ◦ b+ c ◦ d a ◦ c + b ◦ d a ◦ d + b ◦ c
12 a ◦ b+ a ◦ c a ◦ b+ a ◦ d … … b ◦ c + c ◦ d b ◦ d + c ◦ d

L4 3 a ◦ c + a ◦ d + b ◦ c + b ◦ d a ◦ b+ a ◦ d + b ◦ c + c ◦ d
a ◦ b+ a ◦ c + b ◦ d + c ◦ d

12 a ◦ d + b ◦ c + b ◦ d + c ◦ d … … a ◦ b+ a ◦ c + a ◦ d + b ◦ c

The threeec’s that standaparton L2areprecisely the ‘unconnected’pairsof edges
that do not share any vertex, whereas the remaining 12 pairs are the ‘V-shaped’ ec’s,
i.e. pairs of edges that have one vertex in common. The three ec’s that stand apart
on L4, by contrast, are the ‘double V-shaped’ four edge ec’s yielding a ‘closed circuit’,
whereas the remaining 12 ec’s consist of a triangular face with one extra edge ‘stick-
ing out’.11 The lack of uniformity even increases when we move to the L3 elements
of the EA, since the 20 L3 ec’s break up into two small subsets of 4 members and a
bigger subset containing the remaining 12 ec’s:

L3 4 a ◦ b+ a ◦ c + b ◦ c a ◦ b+ a ◦ d + b ◦ d
a ◦ c + a ◦ d + c ◦ d b ◦ c + b ◦ d + c ◦ d

4 a ◦ d + b ◦ d + c ◦ d a ◦ c + b ◦ c + c ◦ d
a ◦ b+ b ◦ c + b ◦ d a ◦ b+ a ◦ c + a ◦ d

12 a ◦ b+ b ◦ c + c ◦ d … … a ◦ c + a ◦ d + b ◦ d

The first 4 L3 ec’s consist of three edges constituting a face of the tetrahedron,
whereas the second group of 4 L3 ec’s consist of three edges sharing one vertex and

11Not surprisingly, the 3 special L2 ec’s have a contradictory ec among the 3 special L4 ones.
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Figure 6: The 3D Hasse diagram of the Edge Algebra EA for the tetrahedron.

hence constituting a ‘tripod’.12 The remaining 12 ec’s of L3 yield ‘S or Z-shaped’ con-
stellations with three consecutively connected edges not constituting a closed cir-
cuit.13 The lack of uniformity — in particular that on L3 of the EA—will play a crucial
role in the next section when describing the partial mapping relations between the
EA on the one hand and VA or FA on the other.

7 Mappings between VA/FA and EA

Let us, in a final step, consider possiblemappings between the complexEA discussed
in the previous section and the two more basic algebras VA and FA. Given the huge
numerical discrepancy between the 16 vc’s or fc’s and the 64 ec’s, these mappings
will — of necessity — be partial, the idea being that all 16 of the former get mapped
onto one of the latter, but not vice versa. The distinction drawn in Section 5 between
‘negative’ mappings — relations of complementarity or opposition — and ‘positive’
mappings — relations of constitution or implication — can be used here as well. Fur-
thermore, this contrast shows up both in theVA to EAmappings and in the FA to EA
mappings. By way of illustration, we will consider two possible combinations. First
we look at a partial negative mapping fromVA to EA:

• mapping the 4 L1 elements ofVA onto 4 of the L3 elements ofEA, each vertex
is associated with the three edges that connect the remaining three vertices
into a face of the tetrahedron:

12Again not surprisingly, these two small subsets of 4 L3 ec’s yield 4 pairs of contradictory ec’s.
13This raises the intruiging question as to the possible connection between the graphical idea of uncon-

nectedness and the logical notion of unconnectedness introduced in Smessaert & Demey (2014).
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a ∼ b ◦ c + c ◦ d + d ◦ b b ∼ a ◦ c + c ◦ d + d ◦ a
c ∼ a ◦ b+ b ◦ d + d ◦ a d ∼ a ◦ b+ b ◦ c + c ◦ a

• mapping the 4 L3 elements of VA onto 4 of the L3 elements of EA, each trio
of vertices is associated with the trio of edges which do not belong to the face
constituted by the three vertices:

a+ b+ c ∼ a ◦ d + b ◦ d + c ◦ d a+ b+ d ∼ a ◦ c + b ◦ c + d ◦ c
a+ c + d ∼ a ◦ b+ c ◦ b+ d ◦ b b+ c + d ∼ b ◦ a+ c ◦ a+ d ◦ a

• mapping the 6 L2 elements of VA onto the 6 L1 elements of EA, each pair of
vertices is associated with the edge constituted by the two excluded vertices:

a+ b ∼ c ◦ d b+ c ∼ a ◦ d a+ c ∼ b ◦ d
b+ d ∼ a ◦ c a+ d ∼ b ◦ c c + d ∼ a ◦ b

Notice that the two special subsets of 4 L3ec’s characterisedabove showupwhen
mapping the L1 and L3 elements of VA. Furthermore, there is a perfect one-to-one
mapping between the 6 vc’s of themost complex L2 ofVA and the 6 ec’s on the sim-
plest L1 of EA. Secondly, we consider the partial positive mapping from FA to EA:

• mapping the 4 L1 elements of FA onto 4 of the L3 elements of EA, each face
is associated with the trio of edges whose vertices constitute the face:

a • b • c ∼ a ◦ b+ b ◦ c + c ◦ a a • b • d ∼ a ◦ b+ b ◦ d + d ◦ a
a • c • d ∼ a ◦ c + c ◦ d + d ◦ a b • c • d ∼ b ◦ c + c ◦ d + d ◦ b

• mapping the 4 L3 elements of FA onto 4 of the L3 elements of EA, each trio of
faces is associated with the trio of edges which connect the faces:

a • b • c + a • c • d + a • b • d ∼ b ◦ a+ c ◦ a+ d ◦ a
a • b • c + b • c • d + a • b • d ∼ a ◦ b+ c ◦ b+ d ◦ b
a • b • c + b • c • d + a • c • d ∼ a ◦ c + b ◦ c + d ◦ c
a • b • d + b • c • d + a • c • d ∼ a ◦ d + b ◦ d + c ◦ d

• mapping the 6 L2 elements of FA onto the 6 L1 elements of EA, each pair of
faces is associated with the edge that connects the two faces:

a • b • c + a • b • d ∼ a ◦ b a • b • c + a • c • d ∼ a ◦ c
a • c • d + a • b • d ∼ a ◦ d a • b • c + b • c • d ∼ b ◦ c
b • c • d + a • b • d ∼ b ◦ d b • c • d + a • c • d ∼ c ◦ d

This second example yields the same overall patterns as the first partial mapping:
the two special subsets of 4 L3ec’s showupwhenmapping the L1 and L3elements of
FA, and there is aperfect one-to-onemappingbetween the6 fc’s of themost complex
L2 of FA and the 6 ec’s on the simplest L1 of EA.
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8 Conclusion

In this paper we have presented a detailed logical-algebraic and geometrical analysis
of the simplest of all polyhedra, viz. the ęĊęėĆčĊĉėĔē. We introduced the vertex al-
gebra VA for the tetrahedron’s zero-dimensional vertex constellations and the face
algebraFA for its two-dimensional face constellations, and then discussed two possi-
ble isomorphismsbetweenVAandFA. Next,we turned to themore complexedgeal-
gebraEA for the tetrahedron’s one-dimensional edge constellations, and briefly con-
sidered some partial mappings between VA and FA on the one hand and EA on the
other. This last step, in particular, definitely deserves much further scrutiny in the
future.

Along the way, at least two intruiging issues were raised for further investigation
within the framework of Logical Geometry, particularly in relation to the analysis pre-
sented in Smessaert & Demey (2014). First of all, is there a natural way of connect-
ing the contrast between negative and positive isomorphisms and the distinction be-
tween the opposition and implication geometries? And secondly, what — if any — is
the possible connection between the graphical and the logical notions of unconnect-
edness?
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